Welcome to Star Trek Simulation Forum

Register now to gain access to all of our features. Once registered and logged in, you will be able to contribute to this site by submitting your own content or replying to existing content. You'll be able to customize your profile, receive reputation points as a reward for submitting content, while also communicating with other members via your own private inbox, plus much more! This message will be removed once you have signed in.

Sign in to follow this  
Followers 0
STSF Jami

This Explains a Lot...

[it sounds a bit strange and quite comical at first, but the implications are interesting.

This article has been abridged and links removed. - J]

 

Rats' brains are more like ours than scientists previously thought

 

By Seth Palmer

March 26, 2013

 

UNIVERSITY PARK, Pa. -- Neuroscientists face a multitude of challenges in their efforts to better understand the human brain. If not for model organisms such as the rat, they might never know what really goes on inside our heads.

 

The brain is a phenomenal processor that in a year's time can generate roughly 300,000 petabytes of data -- 30,000 times the amount generated by the Large Hadron Collider. Trying to decipher its signals is a daunting prospect.

 

But particularly for individuals who have lost a limb or been partially or fully paralyzed, such research has potentially life-changing results because it can enable such biotechnological advances as the development of a brain-computer interface for controlling prosthetic limbs.

 

Such devices require a detailed understanding of the motor cortex, a part of the brain that is crucial in issuing the neural commands that execute behavioral movements. A recent paper published in the journal Frontiers in Neural Circuits by Jared Smith and Kevin Alloway, researchers at the Penn State Center for Neural Engineering and affiliates of the Huck Institutes of the Life Sciences, details their discovery of a parallel between the motor cortices of rats and humans that signifies a greater relevance of the rat model to studies of the human brain than scientists had previously known.

 

"The motor cortex in primates is subdivided into multiple regions, each of which receives unique inputs that allow it to perform a specific motor function," said Alloway, professor of neural and behavioral sciences. "In the rat brain, the motor cortex is small and it appeared that all of it received the same type of input. We know now that sensory inputs to the rat motor cortex terminate in a small region of the motor cortex that is distinct from the larger region that issues the motor commands. Our work demonstrates that the rat motor cortex is parcellated into distinct subregions that perform specific functions, and this result appears to be similar to what is seen in the primate brain."

 

"You have to take into account the animal's natural behaviors to best understand how its brain is structured for sensory and motor processing," said Jared Smith, graduate student in the Huck Institutes' neuroscience program and the first author of the paper. "For primates like us, that means a strong reliance on visual information from the eyes, but for rats it's more about the somatosensory inputs from their whiskers."

 

In fact, nearly a third of the rat's sensorimotor cortex is devoted to processing whisker-related information, even though the whiskers' occupy only one-third of one percent of the rat's total body surface. In humans, nearly 40 percent of the entire cortex is devoted to processing visual information even though the eyes occupy a very tiny portion of our body's surface.

 

[abridged]

 

"This study opens up avenues for studying some very complex neural processes in rodents that are more like our own than we had previously thought," said Smith. "The tools now available for studying activity in the rodent brain are improving at a remarkable pace, and the findings are even more interesting as we discover just how similar these mammalian relatives are to us. This is a very exciting time in neuroscience."

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0